ISOLATION AND IDENTIFICATION OF PATHOGENIC BACTERIA IN EDIBLE FISH SPECIES CHANNA MARULIUS AND CLARIAS BATRACHUS FROM WAINGANGA RIVER OF CHANDRAPUR AND GADCHIROLI DISTRICT (M.S)

Bodhe Y.G.¹, Wadhai V.S.²
¹ Department of Microbiology, S.P. College Chandrapur (MS)
² Department of Microbiology, S.P. College Chandrapur (MS)
¹E mail: yuvraj.bodhe@rediffmail.com

ABSTRACT

The study was designed to investigate the microbial estimation in the fishes Channa marulius and Clarias batrachus collected from Wainganga river of Chandrapur and Gadchiroli District. Aquaculture products can harbour pathogenic bacteria which are part of the natural microflora of the environment. A study was conducted aiming at the isolation of human pathogenic bacteria in gills, intestines, mouth and the skin of apparently healthy fish, C. marulias and C. batrachus. Bacterial pathogens associated with fish can be transmitted to human beings from fish used as food or by handling the fish causing human diseases. Differentiation and characterization of various isolates was based on their growth characteristics on specific culture media (biochemical and gram staining reactions). The following human pathogenic bacteria were isolated Escherichia coli, Staphylococcus aureus, Salmonella typhi, Pseudomonas aeruginosa, Vibrio cholera and Shigella dysenteriae. All the bacterial species which were isolated from the fish were also present in the initial water samples collected. The isolation of enteric bacteria in fish serves as indicator organisms of faecal contamination and or water pollution. Their presence also represents a potential hazard to humans. The mean bacterial load of the isolates was found to be markedly higher than the recommended public health and standard value of 5.0 x 10⁶ CFU/ml which has been adopted by many countries.

Keywords: Channa marulius, Clarias batrachus, human pathogenic bacteria, public health.

1. INTRODUCTION

Fish is a vital source of food for people. The advantage of fish as food is as a result of its easy digestibility and high nutritional value. However fish are susceptible to a wide variety of bacterial pathogens, most of which are capable of causing disease and are considered by some to be saprophytic in nature [11]. [3] Suggested that the type of micro-organisms that are found associated with particular fish depends on its habitat. [7] and [12] classified the bacterial pathogens
associated with fish as indigenous and non-indigenous. The non-indigenous contaminate the fish or the habitat one way or the other and examples include *Escherichia coli*, *Clostridium botulinum*, *Shigella dynteriae*, *Staphylococcus aureus*, *Listeria monocytogens* and *Salmonella*. The indigenous bacterial pathogens are found naturally living in the fish’s habitat for example *Vibrio* species and *Aeromonas* species. The bacteria from fish only become pathogens when fish are physiologically unbalanced, nutritionally deficient, or there are other stress conditions, i.e., poor water quality, overstocking, which allow opportunistic bacterial infections to prevail. Pathogenic and potentially pathogenic bacteria associated with fish and shellfish include *Mycobacteium*, *Streptococcus spp.*, *Vibrio spp.*, *Aeromonas spp.*, *Salmonella spp.* and others [8].

Other studies have also demonstrated the presence of indicator micro-organisms of faecal pollution, opportunistic and pathogenic bacteria to humans in fish samples [9]. There are often bacterial species that are facultative pathogenic for both fish and human beings and maybe isolated from fish without apparent symptoms of the disease. Human infections caused by pathogens transmitted from fish or the aquatic environments are quite common and depend on the season, patients’ contact with fish and related environment, dietary habits and the immune system status of the individual [10]. Transmission of the pathogens can be through the food or the handling of the fish. There have been great economic losses reported due to food borne illness such as dysentery and diarrhoea resulting from consumption of contaminated fish. The microbial association with fish compromises safety and the quality for human consumption; critical is when the micro-organisms are opportunistic and / or pathogenic in nature [9]. The risks of contracting food borne diseases by the residents from the surrounding communities that are using the fish from above mentioned sources may be high. These circumstances prompted this research to investigate the presence of any human bacterial pathogens in the fish that was being caught from the river.
2. MATERIALS AND METHODS

2.1. Study Area

This study was conducted on fish species collected from Wainganga river flowing through Gadchiroli and Chandrapur district. In Gadchiroli district the river flows nearby Armori tehsil and in Chandrapur district it is near Bramhapuri tehsil. So the fish samples i.e. *Channa marulius*, *Clarias batrachus* are collected from the both tehsil areas.

2.1 Laboratory Analysis

2.1.1 Fish samples

Forty fish samples were collected from Wainganga River between the periods of March to July, 2013. Twenty samples each of *Channa marulius* and *Clarias batrachus* were collected aseptically and immediately from two district areas separately and transported in a thermal bag to the laboratory and processed within 3hrs of acquisition, and samples were kept in the refrigerator (4–8°C).

2.1.2 Sample preparation

Sample preparation was made using the method described by [11]. About 10 g of the fish sample was cut from the head, middle and tail regions with a sterile knife. The cut samples were crushed into small pieces in a sterile mortar with about 10 ml sterile water. From the crushed sample, 1 ml aliquot volume was measured out and homogenized in a clean, dry sterile beaker containing 9 ml of distilled water giving a 1:10 dilution. This was done for the 40 fish samples.

2.2 Sampling

The bacterial counts on the external surfaces, intestines and tissue were estimated as follows:

2.2.1 Skin Surfaces

Sample from different locations of the skin of 40 raw fish was taken by rubbing the sterilized cotton swab over the skin and then inoculated
into 9ml of Nutrient broth, MacConkey broth and Selenite F broth which are dispensed in separate tubes. 10 fold serial dilution of the bacterial suspension inoculated in peptone water was prepared in duplicate and viable aerobic bacterial counts were enumerated using 0.1ml and 1ml inoculums in standard plate count agar as described by [13], and then incubated at 37°C for 48 hrs.

2.2.2 Intestines, Gills & Tissues

1g of the fish sample was dissected out, blended and mixed properly in a mortar. It was aseptically transferred to a sample bottle containing 9ml of 0.1% sterile peptone water. The bottle was closed and shaken thoroughly for 10 minutes and allowed to stand for 20 minutes, after which a 10 fold serial dilution was carried out in duplicates and viable aerobic bacterial counts were enumerated in standard plate count agar after incubation at 37°C for 48 hrs as described by [13]. Mueller-Hinton Agar for Pseudomonas spp. Salmonella spp. and Shigella spp., were enumerated using Salmonella Shigella Agar (SSA) and Thiosulphate Citrate Bile Salt Sucrose (TCBS) agar for pathogenic Vibrio spp. The plates were incubated at 37°C for 24hrs. The observed colony growth were counted using Coulter™ Colony counter according to plate count method. Identification of the organisms was done using the phenotypic and biochemical characteristics as described by [2] and [13].

2.3 Estimate of mean colony forming unit per ml (CFU/ml)

The mean colony forming unit per ml (CFU/ml) denoted by \(\bar{x} \) was calculated as \(\frac{\Sigma fx}{\Sigma f} \), where \(\Sigma fx \) is the sum of the products of number of colonies and the colony forming unit per ml; while \(\Sigma f \) is the summation of the number of colonies.

3. RESULTS

In this study, Out of the 40 fish samples analysed as shown in table 1. for the skin had the highest number of bacteria with 23.6x 10^6 cfu/ml in C. marulias and C. batrachus had 22.89 x10^6 cfu/ml respectively. The gills had the lowest isolation with 8.60 x 10^6 cfu/ml.
in *C. marulias* and *C. batrachus* 3.64 x 10⁶ cfu/ml. The Coliform was highest in *C. marulias* 23.6 x 10⁶ cfu/ml as compared to other fish.

Table 1: Count of bacteria present at different parts of examined sample fishes

<table>
<thead>
<tr>
<th>Fish</th>
<th>Parts</th>
<th>E. coli (cfu/ml)</th>
<th>S. aureus (cfu/ml)</th>
<th>P. aeruginosa (cfu/ml)</th>
<th>V. cholerae (cfu/ml)</th>
<th>S. typhi (cfu/ml)</th>
<th>S. dysenteriae (cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channa marulias</td>
<td>Intestine</td>
<td>14.5</td>
<td>6.18</td>
<td>17.2</td>
<td>8.19</td>
<td>5.17</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>Gill</td>
<td>12.04</td>
<td>3.84</td>
<td>19.49</td>
<td>-</td>
<td>4.18</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
<td>9.08</td>
<td>5.46</td>
<td>19.88</td>
<td>-</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>15.2</td>
<td>2.48</td>
<td>16.8</td>
<td>2.48</td>
<td>4.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Clarias batrachus</td>
<td>Intestine</td>
<td>12.56</td>
<td>5.2</td>
<td>18.24</td>
<td>1.34</td>
<td>4.48</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td>Gill</td>
<td>10.5</td>
<td>7.16</td>
<td>17.47</td>
<td>-</td>
<td>3.46</td>
<td>14.25</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
<td>14.44</td>
<td>20.1</td>
<td>22.89</td>
<td>-</td>
<td>3.18</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>7.84</td>
<td>16.47</td>
<td>16.43</td>
<td>1.48</td>
<td>2.1</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 1 revealed the isolation of *Pseudomonas spp.* with the skin having the highest number in *C. batrachus*. The *Vibrio spp.* isolated had the lowest count of 1.48 x 10⁶ cfu/ml from the mouth of *C. batrachus* as compared with the mouth of other fish samples. The intestine is the most colonized part of the examined areas in the fish with *C. batrachus* having the highest count of 18.24 x 10⁶ cfu/ml, while the lowest count was exhibited in the *C. marulias* (1.06 x 10⁶ cfu/ml). The gills likewise showed possible colonization but in the lowest count as compared to other parts. No isolation of *Vibrio spp.* on the gills and skin of both fishes. *E. coli* isolation showed the highest count in *C. batrachus* for skin (14.44 x 10⁶ cfu/ml), followed by *C. marulias* (9.08 x 10⁶ cfu/ml). The intestine and gills were also heavily populated by *E. coli* with the highest exhibited in the gills of *C. marulias* (12.04 x 10⁶ cfu/ml), followed by *C. batrachus* (22.89 x 10⁶ cfu/ml) and (19.88 x 10⁶ cfu/ml) in the *C. marulias* (10.5 x 10⁶ cfu/ml). *Staphylococcus spp.* had a low isolation rate in all samples analysed as generally compared with other isolated organisms that
had the lowest counts. The human bacterial pathogens that were isolated and identified include *Escherichia coli*, *Pseudomonas aeruginosa*, *Shigella Enterococcus faecalis* and *Salmonella typhi* as indicated in the table.

4. DISCUSSION

A high population of bacteria in food indicates the general quality of the food and the degree of spoilage it might have undergone. The occurrence of total bacterial counts of many of the samples investigated having > 5X10⁶ CFU/g raises concern about the hygienic status of the production and point of sale environment. Although only a few infectious agents in fish are able to infect humans, some exceptions such as salmonella exist that may result in fatalities. However, the greatest risk to human health is due to the consumption of raw or insufficiently processed fish and fish products [15]. The results from this study and according to published microbiological guidelines as cited by [6] suggest that the microbiological quality of the fish examined is unacceptable and pose a potential risk to public health. The diversity of potential pathogens from the samples of fish is of concern particularly at a time when many in our communities are immunologically compromised as a result of various illnesses. These opportunistic and pathogenic bacteria were also previously isolated by several other researchers from fish [9]. The fish in this study harboured human disease causing organisms that cause diseases such as food poisoning, diarrhoea, typhoid fever and Shigellosis. [3] Suggested that when present in food, pathogens such as *S. aureus*, *Salmonella*, *Shigella* and *Pseudomonas* are most likely to cause food-borne diseases. The high incidence of *Salmonella* in the fish from the river is a major health concern. In addition to salmonellae, the presence of diverse enteric bacteria in fish indicates the contamination representing a potential hazard to human health especially those who are sick or are on immunosuppressive drugs.
Severe regulations and monitoring activities coupled with food safety training of suppliers (fishermen and traders) and ultimately the consumers on various aspects of Good Hygiene Practice (GHP), Good Manufacturing Practice (GMP) and HACCP is strongly recommended. The presence of faecal coliforms in fish demonstrates the level of pollution of their environment because Coliforms are not the normal bacteria in fish. Of the organisms that were isolated and identified that is *S. typhi*, *S. aureus*, *S. dysentariae* and *E. coli* are non-indigenous pathogens that contaminate fish or fish habitats in one way or the other [7] and [12]. The isolation of *Salmonella*, *Shigella*, and *E. coli* indicate faecal and environmental pollution [16]. Coliforms such as *E. coli* are usually present where there has been faecal contamination from warm blooded animals [1]. The organism *E. coli* is recognized as the reliable indicator of faecal contamination in small numbers and in large numbers it is an indicator of mishandling [4]. *E. coli* is the only species in the coliform group that is found in the human intestinal tract and in the other warm blooded animals as a commensal and is subsequently excreted in large quantities in faeces [5].

Of concern is the fact that the high bacterial loads found in the raw fish at the source point are most likely to have a multiplier effect as the caught fish are poorly handled and stored until they are consumed. In similar studies, *Escherichia coli*, *Pseudomonas aeuriginosa*, *Shigella dynteriae*, *Staphylococcus aureus* and *Salmonella typhi* were isolated from the gills, intestines, and skin of *Megalaspis cordyla* and muscles of *Priacanthus hamrur* from Royapuram waters in India by [14]. This was attributed to the heavy load of sewage disposal into the seas which could act as a suitable environment for the growth and survival of the human pathogens. Members of the genus *Pseudomonas* are found in the soil and natural sources of water and are important phytopathogens and agents of human infections being considered opportunistic pathogens [14].
5. CONCLUSION

Six human bacterial pathogens i.e. *Escherichia coli*, *Pseudomonas aueriginosa*, *Shigella dynteriae*, *Staphylococcus aureus*, *vibrio cholera*, and *Salmonella typhi* were isolated from the two fish species *Channa marulius* and *Clarias batrachus* collected from Wainganga river of Chandrapur and Gadchiroli District. The presence, in large populations of these bacterial pathogens indicates high levels of faecal contamination in the river. The presence of enteric bacteria may be attributed to faecal contamination due to improper sewage disposal and or water pollution. The fish act as a reservoir of human pathogens and the presence of highly pathogenic agents such as *Salmonella*, *Shigella* species and of opportunistic pathogens is a potential health risk/hazard to human beings and may cause diseases to susceptible individuals especially the immune-compromised consumers. Moreover the recoveries of various organisms, which are potentially pathogenic to humans, in the fish suggest that if they are improperly handled, undercooked or consumed raw may contribute to the spread of the pathogens in the community. Further examination of fish especially for the presence of pathogens, during handling, storage and up to the very point of consumption is needed for the protection and maintenance of community health by keeping food borne diseases to a minimum.
REFERENCES

Gilbert, R.J., de Louvois, J. and Donovan, T. 1996. Microbiological guidelines for some ready to eat foods sampled at the point of sale. PHLS Microbiology Digest. 13:41-43.

